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NDVI–Climate relationships in high-latitude mountains of Alaska and Yukon
Territory
David Verbyla a and Thomas A. Kurkowski b

aDepartment of Natural Resources Management, University of Alaska Fairbanks, Fairbanks, Alaska, USA; bScenarios Network for Alaska and
Arctic Planning, University of Alaska Fairbanks, Fairbanks, Alaska, USA

ABSTRACT
High-latitude systems in northwestern Canada and Alaska have warmed rapidly. The aim of this
study was to examine how a remotely sensed proxy of vegetation productivity varied among
mountain ranges with respect to elevation and climate from 2002–2017. Our study area included
high-latitude mountains in Alaska, USA, and Yukon Territory, Canada, ranging from cold arctic
mountains in the tundra biome to warmer interior mountains areas within the boreal biome. We
used the annual maximum Normalized Difference Vegetation Index (NDVI) data from the 250-m
MODIS NDVI product as a proxy of maximum growing season photosynthetic activity. The long-
term (16-year) and interannual pattern of maximum NDVI was investigated with respect to
elevation, July temperature, and July precipitation classes within four climatic mountain regions.
The July temperature lapse rate was consistently linear, whereas the long-term maximum NDVI
lapse rate was nonlinear. At lower elevations, the high-precipitation region had the highest NDVI,
whereas the interior mountains region had the highest NDVI at higher elevations. The long-term
maximum NDVI was negatively correlated with July precipitation for areas with July temperature
below 12°C. Above 12°C, NDVI was positively correlated with July precipitation, with the greatest
rate of NDVI increase with precipitation at the warmest July temperature class. The pattern of
interannual peak NDVI with respect to July temperature was not as strong as the long-term
pattern; however, the only interannual negative correlation between peak NDVI and July tem-
perature was at lower elevations within the interior mountains. We concluded that among
a regional climatic gradient of mountain areas, low growing season temperature and length
were likely constraining vegetation productivity, and lower growing season moisture may be an
important constraint at the warmest interior mountains region.
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Introduction

Alaska climate warming and tundra productivity

Climate warming at high latitudes has been substantial
over the past few decades (IPCC 2013), and many
biotic and abiotic changes have occurred (Hinzman
et al. 2005; Post et al. 2013; Showstack 2015). High-
latitude climate warming has accelerated since 2000
(Karl et al. 2015). As summer sea-ice extent continues
to decline, arctic amplification of warming is likely to
continue (Serreze et al. 2009; Screen and Simmonds
2010; Serreze and Barry 2011).

Over the past 50 years, the highest rate of climate
warming in North America has occurred in Alaska and
northwest Canada (Clegg and Hu 2010). This warming
has led to record-setting changes including maximum

sea-ice retreat and amplified arctic warming (Melillo,
Richmond, and Yohe 2014). As sea ice has declined in
arctic Alaska, autumn monthly temperatures have risen
by up to 7°C over the past 3 decades (Wendler, Moore,
and Galloway 2014). The summer climate regime of
interior Alaska is now the warmest in the past
200 years (Barber et al. 2004). Alaska recently experi-
enced the warmest winter in 90 years (Walsh et al.
2017), and the length of the unfrozen period has
increased by nearly 50 percent in the last century
(Wendler and Suhlski 2009).

Associated with climate warming, an increase in vege-
tation productivity and phytomass has occurred in arctic
tundra communities (Epstein et al. 2012; Weijers et al.
2018). Warming-induced expansion of tundra shrubs has
been documented in arctic Alaska (Tape, Sturm, and
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Racine 2006; Naito and Cairns 2015) and Canada
(Tremblay, Levesque, and Boudreau 2012; Myers-Smith
and Hik 2017). Plot-level studies have shown increases in
shrub density and height with warming across the cir-
cumpolar North (Myers-Smith et al. 2011; Elmendorf
et al. 2012). Despite variation in landscape types, shrub
radial growth has responded positively to mean June
temperature across the Alaskan tundra (Ackerman et al.
2018). Based on over 400 field plots throughout northern
Alaska, Swanson (2015) found that high shrub canopy
was associated with warm sites and projected an expan-
sion of tall shrubs across the region.

Remote sensing relationships to climate warming

Satellite remote sensing has been used to understand
changes in vegetation productivity at high latitudes. In
general, a divergent response to a warming climate has
been documented with a decrease in productivity in war-
mer boreal regions and an increase in productivity in
colder tundra regions (Goetz et al. 2005). Understanding
the response of plant growth at high latitudes is crucial for
understanding feedbacks between a warming climate,
land cover, and atmospheric CO2 (Bunn, Goetz, and
Fiske 2005). The Normalized Difference Vegetation
Index (NDVI) has been used as a remotely sensed proxy
for vegetation productivity. Tundra NDVI is highly cor-
related with canopy leaf area (Steltzer and Welker 2006),
canopy cover (Boelman et al. 2011), and phytomass
(Raynolds et al. 2012; J. E. Hobbie et al. 2017).

As the climate has warmed, NDVI has increased in
many arctic tundra regions. Across the circumpolar
Arctic, there has been a positive linear relationship
between NDVI and land surface temperature
(Raynolds et al. 2008). At a regional scale, tundra max-
imumNDVI has been positively correlated with summer
warmth in Alaska (Jia, Epstein, and Walker 2003;
Verbyla 2008) and Canada (Bunn, Goetz, and Fiske
2005). In the Alaskan arctic tundra, Jia, Epstein, and
Walker (2003) found up to a 19 percent increase in
peak growing season NDVI associated with increasing
summer warmth. Arctic tundra annual shrub growth has
been correlated with NDVI (Forbes, Macias-Fauria, and
Zetterberg 2010; Blok et al. 2011a). There was a strong
linear relationship between maximum NDVI, summer
temperature, and total plant phytomass along a climatic
gradient in arctic Alaska (D. A.Walker et al. 2003), arctic
Canada, and arctic Europe (D. A. Walker et al. 2012).

Study goals

There have been many high-latitude studies document-
ing increasing tundra NDVI associated with warming

from a circumpolar perspective (Raynolds et al. 2008;
Bhatt et al. 2010; Epstein et al. 2012) to a continental
perspective (Goetz et al. 2005; Beck and Goetz 2011;
Dutrieux et al. 2012). There have been few regional
remote sensing studies focusing on high-latitude
mountains. Our focus in this study is NDVI among
high-latitude mountain ranges of Western North
America (Figure 1).

In this study, we used a 16-year maximum NDVI
as an approximation of maximum vegetation produc-
tivity under natural conditions. Vegetation produc-
tivity in some high-latitude areas may be slow to
respond to a warming climate. For example, in
a 3-year warming experiment, Radville, Post, and
Eissenstat (2018) found that 2°C warming did not
increase tundra productivity in Greenland. Short-
term, direct response to warming may be less than
long-term, indirect response. Vegetation productivity
may be indirectly limited by cold temperatures by
controlling growing season length and limiting root-
ing depth and nutrient availability (Chapin 1983;
Chapin et al. 1995). In a survey of sixty-one tundra
warming experiments, Elmendorf et al. (2012) found
that experimental duration had an important effect
on the vegetation response to warming. In northern
Alaska, the slow increase in phytomass following
multiyear warming may be lagged due to the indirect
effects of warming on microbial mineralization of
organic nitrogen, which strongly limits plant growth
(J. E. Hobbie et al. 2017). However, there has not
been a consistent vegetative response to long-term
warming. For example, there was no significant
increase in vegetative cover over 25-year repeat mea-
surements of field plots on the arctic coastal plain
(Pattison et al. 2015). In the warming high Arctic,
there was no increase in vegetative cover of ever-
green–shrub heath communities after 15 years
(Hudson and Henry 2010). In Sweden, after
20 years of warming there was no significant change
in alpine vegetative cover (Wilson and Nilsson 2009).

In this study, we also investigated the interannual
peak summer NDVI. For some arctic vegetation types,
there has been an interannual response to climatic
conditions. For example, Weijers et al. (2018) docu-
mented the annual shoot and ring growth of two alpine
shrub species strongly driven by summer temperature.
Summer temperature has been correlated with annual
radial growth of tundra shrubs in Russia and
Alaska (Li et al. 2016; Ackerman et al. 2018).

The goal of this study was to examine maximum
NDVI among the major mountain areas in northern
Alaska, USA, and the Yukon Territory, Canada. We
had three questions:
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(1) Is there a linear lapse rate of declining NDVI as
July temperature decreases linearly with elevation?

(2) How does long-term (16-year) maximum
NDVI vary with long-term temperature and
precipitation classes?

(3) Is there a significant positive correlation between
summer warmth and summer maximum NDVI
across a time series of 14 years?

Methods

Based on well-known regional climate (Hammond and
Yarie 1996; Stafford, Wendler, and Curtis 2000; Fleming
et al. 2000), we grouped our mountain areas into four
regions (1) cold Arctic, (2) Arctic, (3) high precipitation,
and (4) interior mountains (Figure 1). The cold Arctic
region includes the north slope of the Brooks Range in
Alaska and the Richardson Mountains in the Yukon
Territory, Canada. This region is influenced by cold air
masses flowing from sea-ice areas of the Arctic Ocean and
does not have forested vegetation, even at the lowest
elevations. Due to the influence of these cold air masses,
summer temperatures are warmer in the foothills relative

to lower elevations on the Arctic Coastal Plain. The Arctic
region is also primarily shrub tundra, transitioning to
boreal forest treeline at the lowest elevations. The Arctic
region includes the south slope of the Brooks Range in
Alaska and the Wernecke Mountains in the Yukon
Territory. The interior region includes the rain shadow
portions of the Alaska Range and Wrangell Mountains
and the Tanana Uplands in Alaska. In the Yukon
Territory, interior mountains include the Pelly,
Mackenzie, Kluane, Coast, and Olgilvie Mountains. The
high-precipitation region includes mountains that have
highest precipitation due to storm tracks from the Pacific
Ocean. These areas include portions of the Wrangell
Mountains and Alaska Range as well as the Kenai,
Talkeetna, and Chugach Mountains. All mountains in
the high-precipitation region have substantial alpine
glaciers.

Gridded temperature and precipitation data

There are few long-term weather stations within our
mountain regions. We therefore used gridded tempera-
ture and precipitation products (rasters) for climate

Figure 1. Mountain areas classified into four regions. Black arrows represent dominant storm tracks from Arctic and Pacific Oceans.
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data. These rasters were based on monthly climate
products (Climate Research Unit; CRU TS 3.2;
Harris et al. 2014), which were downscaled by the
Scenarios Network for Alaska and Arctic Planning
(SNAP) program at the University of Alaska
Fairbanks (SNAP 2016). These products were down-
scaled via the delta method (Hay, Wilby, and Leavesley
2000; Hayhoe 2010) using Parameter-elevation
Relationships on Independent Slopes Model (PRISM;
Daly et al. 2008) with 1961–1990 2-km-resolution cli-
mate normals (monthly temperature and precipitation)
as baseline climate. The delta method was implemented
by calculating climate anomalies applied as differences
in temperature and quotients in precipitation between
monthly CRU data and PRISM climate normals for
1961–1990. The coarse-resolution CRU temperature
anomalies were then interpolated to finer resolution
PRISM spatial resolution via a spline technique and
then added to the PRISM temperature normal. CRU
precipitation anomalies were interpolated and then
multiplied by the PRISM climate normals. The PRISM
climatology product was used as baseline climate in the
downscaling procedure because it accurately represents
the elevational effects on precipitation patterns across
mountainous regions (Daly et al. 2008), and it is based
on precipitation and temperature observations from an
extensive network of weather stations across Alaska—
455 for precipitation, 316 for temperature—as well as
the European Center for Medium-range Weather
Forecasts’ reanalysis of temperatures at the 500-mb
height (Simpson et al. 2005). There were large gaps in
the observation network across the mountains of
Alaska, and this could potentially have an impact on
the results. We created a mean July temperature and
total July precipitation rasters at 1-km pixels size from
July rasters from 2000 to 2015. We also used July
temperature at 1-km pixels from each year from 2000
to 2015 for our interannual maximum NDVI/July tem-
perature correlation analysis.

Maximum NDVI data

As a proxy for maximum potential vegetation pro-
ductivity, we used a long-term (16-year) NDVI.
MODIS 16-day NDVI products (MOD13Q1 V6,
MYD13Q1 V6) from 15 June to 15 August were
downloaded for each year from 2002 through 2017
from https://earthexplorer.usgs.gov/. Three tiles
(H10V02, H11V02, H12V02) covering Alaska and
western Canada (Figure 1) were mosaiced and pro-
jected to the Alaska Albers NAD83 coordinate system
at 250-m pixel size. Pixels with a reliability value of 0
(good reliability) and an NDVI exceeding 0.2 were

selected to represent high-quality vegetated pixels for
each 16-day composite period.

We computed the maximum NDVI for each growing
season. In the foothills of the Brooks Range, plot-level
maximum NDVI was mid- to late July (Boelman et al.
2011; May et al. 2017). Based on satellite sensor NDVI,
Jia, Epstein, and Walker (2004) found peak NDVI
between 22 July and 4 August for four common tundra
types in northern Alaska. Therefore, we computed the
growing season maximum NDVI for each 250-m NDVI
pixel from mid-June through mid-August (Figure 2a).
The 2002–2017 maximum NDVI raster was then aggre-
gated to 1 km by selecting the maximum of the sixteen
NDVI values at 250-m pixel size within each 1-km out-
put pixel (Figure 2b). The maximum from the
2002–2017 time series was then computed (Figure 2c)
for each 1-km pixel to represent the long-term maxi-
mum NDVI.

Elevation and land cover classes

To map elevation zones within each mountain class, we
used the Global Multi-resolution Terrain Elevation
Data 2010 produced by the U.S. Geological Survey
and the National Geospatial-Intelligence Agency
(https://earthexplorer.usgs.gov/) at 30 arc second spa-
cing. To match the other geospatial data sets, the eleva-
tion data were projected to the Alaska Albers NAD83
coordinate system using bilinear interpolation to 1-km
pixel size. The elevation raster was clipped to the areal
extent of the four mountain classes. We then reclassi-
fied the elevation raster into 100-m elevation zones.

To assess changes in NDVI associated with struc-
tural changes in vegetation such as broadleaf forest,
spruce forest, shrub, dwarf shrub, etc., we used the
National Land Cover Dataset (NLCD) 2001 (Selkowitz
and Stehman 2011). We determined the majority of
land cover class from NLCD 30-m pixels within each
1-km pixel. Some pixels had a majority class of “bar-
ren,” but because these pixels had a maximum NDVI
above 0.2, they were likely partially vegetated.

Lapse rate of temperature and long-term maximum
NDVI

To estimate lapse rates of July temperature and long-
term maximum NDVI with elevation, we delineated
100-m elevation zones within each of the four moun-
tain regions. We then computed the mean July tem-
perature and the mean long-term maximum NDVI for
each 100-m class from 500 to 2,000 m of elevation. We
then used linear regression to develop temperature and
NDVI lapse rate trend lines for each mountain region.
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Long-term maximum NDVI in relation to July
temperature and precipitation

We tested relationship between long-term maximum
NDVI and long-term July climate. Based on annual
July mean temperature and total July precipitation
grids, we computed the 2000–2015 mean July tempera-
ture and precipitation for each 1-km cell. These values
were then aggregated to classes, with the July tempera-
ture class in 1°intervals, ranging from 5°C to 17°C; the
July precipitation class was in centimeters, ranging
from 3 to 29 cm. For the four mountain regions, we
computed the mean long-term (2002–2017) maximum
NDVI (Figure 2c) within the July temperature and July
precipitation class for all climatic classes that had at
least thirty pixels.

Interannual maximum NDVI related to July
temperature

We also tested the relationship between interannual max-
imum NDVI and July temperature for the summers of
2002–2015 (at the time of this study, the CRU July tem-
perature product was not available after 2015). For this
analysis, we computed the Pearson’s r correlation coeffi-
cient for each 1-km pixel from 2002 to 2015
(n = 14 years). We then computed the mean correlation

value with each 100-m elevation zone for the four moun-
tain regions. We expected a consistently positive correla-
tion between annual maximum NDVI and mean July
temperature. Because cold tundra maximum NDVI has
been correlated with summer warmth (Jia, Epstein, and
Walker 2003; Verbyla 2008), we also expected this posi-
tive correlation to be strongest at higher elevations and
within the coldest mountain region (cold Arctic
mountains).

Results

Lapse rate of temperature and long-term maximum
NDVI

From 500 to 2,000 m elevation, the linear lapse rate of
mean July temperature was significant (p < 0.01) and
was similar among the four mountain areas (Figure 3a).
The July temperature at a given elevation was coolest in
the cold Arctic region and warmest in the interior
region. The long-term (2002–2017) maximum NDVI
consistently declined with increasing elevation for each
mountain region; however, the decline was not linear
(Figure 3b). The interior region had the highest NDVI
for elevations above 1,000 m, and the high-
precipitation region had the highest NDVI for eleva-
tions below 1,000 m. The rate of declining NDVI was

Figure 2. Selection of long-term maximum NDVI. (a) For each 2002–2017 growing season, the maximum NDVI was selected for each
250-m pixel. In this example, an NDVI value of 0.78 (white circle) was selected from early July. (b) Aggregation of 250-m maximum
NDVI values to 1-km NDVI value. (c) Selection of long-term maximum NDVI from 2002–2017 1-km maximum NDVI time series.
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greatest at higher elevations, especially for the interior
class. There was no significant difference in mean max-
imum NDVI from 500- to 1,300-m elevation within the
interior region (analysis of variance, p > 0.05).

Long-term maximum NDVI in relation to July
temperature and precipitation

The long-term (2002–2017) maximum NDVI was
negatively correlated with July precipitation and posi-
tively correlated with July temperature (Figure 4). At
July temperature classes cooler than 12°C, the interior
mountains region consistently had the highest long-
term maximum NDVI, whereas for classes warmer
than 12°C, the high-precipitation mountains region
consistently had the highest long-term maximum
NDVI.

The relationship of maximum NDVI with precipita-
tion was negative for temperature classes below 12°C
and positive for warmer temperature classes (Figure 5).
The greatest rate of increasing NDVI with precipitation
was at the warmest July temperature class (Figure 5).

Interannual maximum NDVI related to July
temperature

Our growing season maximum NDVI ranged from
2002 to 2017 and our annual July temperature rasters
ranged from 2000 to 2015, yielding a sample size of
fourteen (2002–2015). A Pearson’s r value
of >0.43 would be significant (p < 0.05, one-tailed
distribution) at a sample size of fourteen. There were
no significant correlations at p < 0.05. However, the
positive correlation between maximum growing season

Figure 3(a). One hundred-meter elevation lapse rate with decadal July temperature. The lapse rate per 1,000-m elevation gain
was −4.3°C/km for cold Arctic class, −4.2°C/km for Arctic, −4.4°C/km high-precipitation, and −4.5°C/km for interior mountain class.
(b) 2002–2017 mean long-term maximum NDVI by elevation zone.
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NDVI and July temperature was strongest in the cold
Arctic region. There was a negative mean correlation
between maximum growing season NDVI and July
temperature for the interior region (Figure 6).

Discussion

As expected, the mean July temperature declined line-
arly with elevation (Figure 3a). At any given elevation,
the mean July temperature was coolest cold Arctic
region and warmest in the interior region. The interior
mountain region had the steepest lapse rate, which is
likely due to less influence of the Arctic and Pacific

Oceans relative to the other mountain regions. The July
temperature lapse rates of 4.2°C–4.5°C per kilometer
was similar to April–June monthly lapse rates of
4.9–4.3 in an alpine area of southern Idaho
(Blandford et al. 2008) and the summer lapse rate of
−4.3 from an icefield in Nunavut, Canada (Marshall
et al. 2007). In a comparison of SNAP monthly gridded
temperature with measurements from the Alaska
Range, Sadoti et al. (2018) found a measured versus
gridded July lapse rate within 0.1°C–0.3°C for two
summers, with the measured July temperature consis-
tently cooler than the SNAP-gridded product, possibly
due to cool air pooling at some measured sites.

Figure 4(a). Mean long-term (2002–2017) maximum NDVI by precipitation class. (b) Mean long-term (2002–2017) maximum NDVI
by temperature class. Each class was computed from at least 100 1-km pixels. Each mountain class had a second-order polynomial
trend line with R2 > 0.97, p < 0.01.
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The decline of long-term maximum NDVI with
elevation was not linear (Figure 3b). This nonlinear
pattern was likely due to changes in structural vegeta-
tion types with July temperature classes (Figure 7). For
example, for the interior region, there was a substantial
difference in mean NDVI among classes that vary with
elevation (Figure 8). In a study of national parks across
northern Alaska, Swanson (2015) found that the frac-
tion of area in forest versus tall shrub vegetation type
varied with July temperature class. Other studies in
Alaska have described changes in structural vegetation
types related to climatic zones. For example,
D. A. Walker et al. (2003) found that total plant phy-
tomass and maximum NDVI increased in arctic tundra

across three bioclimate zones ranging from coldest high
arctic dominated by graminoids and prostrate shrubs to
warmest tall shrub tundra. In a study of spruce along
a longitudinal gradient in Alaska, Miller et al. (2017)
found that seedling, sapling, and tree abundance corre-
lated with maximum July temperature, and as the cli-
mate has warmed there has been a shift in geographical
range limits to spruce establishment. As an example
from this study, within the interior mountains class,
high NDVI broadleaf forest occurred above a July
threshold temperature of 12°C, whereas spruce
occurred above a July threshold of 11°C, and lower
NDVI dwarf shrub rarely occurred in July temperature
classes warmer than 13°C (Figure 7). These changes in

Figure 5(a). Negative relationship between mean long-term (2002–2017) maximum NDVI by precipitation for cooler temperature
classes from all mountain pixels. (b) Positive relationship between mean maximum long-term NDVI by precipitation for warmer
temperature classes from all mountain pixels. All linear trends were significant (p < 0.01) except for the 12°C trend line.
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structural vegetation types and the associated changes
in NDVI likely caused lower long-term maximum
NDVI in colder July temperature zones. The declining
long-term maximum NDVI with elevation was consis-
tent among the four mountain regions (Figure 3b). For
elevations less than 1,100 m, the high-precipitation
region had the highest NDVI, and the interior region
had the highest NDVI above this elevation (Figure 3b).
This may be due to moisture constraining the long-
term maximum NDVI at lower elevations, whereas
growing season temperature and length may be major
constraints at higher elevations.

Most arctic tundra studies have foundmaximumNDVI
to be positively correlated with summer temperature across

the circumpolar arctic (Raynolds et al. 2008; Bhatt et al.
2017), North America (Bhatt et al. 2013), and arctic Alaska
(Jia, Epstein, andWalker 2003; Verbyla 2008). Field studies
have also shown a strong positive relationship between
shrub ring growth and summer temperature in willow
(Salix pulchra; Ackerman et al. 2018) and dwarf birch
(Betula nana; Blok et al. 2011a; Li et al. 2016). Summer
temperature may be the most influential factor controlling
variation in arctic shrub growth (Myers-Smith et al. 2015).
In this study, the relationship between long-term maxi-
mum NDVI and July temperature was strongest at cooler
temperature classes (Figure 4). The mean long-term max-
imum NDVI was consistently greatest for the interior
mountains region for July temperatures less than 12°C,

Figure 6. Mean Pearson’s r from 2002–2015 interannual maximum NDVI and July temperature by 100-m elevation zone. Each mean
was based on at least thirty 1-km pixels. A Pearson’s r of >0.43 would be required for a significant (one-tailed p < 0.05) correlation
with a sample size of 14 years (2002–2015).

Figure 7. Areal percentage of structural vegetation by elevation zone within interior mountains region.
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likely due to a longer growing season. At July temperatures
above 12°C, the high-precipitation region consistently had
the highest mean long-termmaximumNDVI, perhaps due
to moisture limitation among the other classes at these
warmer temperatures.

In this study there was a negative relationship between
mean long-term maximum NDVI and July precipitation.
This was likely due to a negative correlation between
increasing precipitation and decreasing temperature as
elevation increased (Pearson’s r = −0.74, p < 0.01).
There was a tipping point at 12°C in the relationship
between maximum NDVI and precipitation (Figure 5).
At July temperatures cooler than 12°C, NDVI was nega-
tively related to precipitation and the lowest NDVI values
were from the coldest, wettest classes. This may have been
due to a shorter growing season at the coldest, wettest
classes. In a plot-based study among Alaska’s arctic
national parks, Swanson (2015) found that all plots with
high shrub canopy volume had spring snowpack loss by
the end of May. At July temperatures warmer than 12°C,
NDVI was positively related to precipitation, with the
strongest relationship in the warmest temperature class
(Figure 5). Moisture may become more limiting at these
warmer temperatures. Ackerman et al. (2018) found evi-
dence of temperature-induced moisture limitation during
warm years in Salix pulchra consistent among four dif-
ferent landscapes in arctic Alaska. In a relatively dry
climate of western Greenland, Gamm et al. (2017) found
declining growth of deciduous shrubs related to increas-
ing moisture limitation in a warming climate.

Although not statistically significant, there was
a positive correlation between peak summer NDVI and
July temperature, with the highest correlation in the cold
Arctic region (Figure 6). The only classes with a negative

correlation between peak summer NDVI and July tem-
perature were the low-elevation zones from the interior
mountains region, likely due to moisture limitation at
these warm areas. Spruce forest was the dominant vege-
tation type at these lower elevations in interior moun-
tains. At lower elevations, warm summers likely have
a direct effect on tree ring growth due to temperature-
induced drought stress (Barber, Juday, and Finney 2000;
Beck and Goetz 2011). Maximum summer NDVI was
positively correlated to the last day of spring snow only
at elevations above 500 m (Verbyla 2015). This was likely
due to later snowmelt at higher elevations having
a greater effect on soil moisture during the summer
drought period (Dearborn and Danby 2018), whereas
lower elevation summer soil moisture was not related to
late spring snowpack water equivalent (Verbyla 2015).
Based on tree-ring analyses in interior Alaska, white
spruce ring growth declines above a July threshold of
about 12°C–14°C (Wilmking et al. 2004; Juday and Alix
2012; Juday et al. 2015; Lloyd, Duffy, and Mann 2013).
In southwestern Alaska, where there is typically more
summer precipitation, white spruce growth leveled off at
about 13°C (Sherriff et al. 2017). At elevational treeline,
a threshold of 11°C was documented in the Yukon
Territory (D’Arrigo et al. 2004). In this study, above
12°C there was a strong relationship between long-
term maximum NDVI and precipitation class (Figure
5). If the July temperature warmed by 2°C, 88 percent of
the interior mountains pixels would be above this 12°C
threshold. There has been no significant increase in
precipitation as interior Alaska’s climate has warmed
(Vose et al. 2017), and if this trend continues, moisture
rather than cold temperature may become an important
limiting factor in the interior mountains.

Figure 8. Interior mountains mean long-term maximum NDVI by land cover class. Majority vegetation type was determined based on
30-m NLCD pixels each 1-km NDVI pixel. Error bars represent one standard deviation of long-term maximum NDVI at 1-km pixel size.
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The weaker correlations of the interannual peak
NDVI–July temperature relationships relative to the
longer-term relationships could be due to
inherent year-to-year variability masking longer-term
increase in plant biomass due to a warming climate
(J. E. Hobbie et al. 2017). Fraser et al. (2014) also
found no significant interannual correlation between
NDVI and July temperature but found a strong
(r = 0.90) long-term correlation. There may be inter-
annual lag effects; for example, Blok et al. (2011b)
found that the precipitation of the previous summer
was significantly correlated with the current summer’s
shrub ring growth, suggesting that wet summers facil-
itate shrub growth in the following growing season.
Extreme climatic events and winter warming may lead
to decreased maximum growing season NDVI. Warm
autumn may delay winter hardening, and winter rain
event can cause canopy icing damage (Phoenix and
Bjerke 2016). Frost damage associated with warm win-
ters and low snowpack may reduce growth in the fol-
lowing summer (Bokhorst et al. 2009). Extreme winter
warming may trigger mid-winter bud burst and loss of
freeze tolerance (Bokhorst et al. 2011).

Warming effects can be indirect (Chapin 1983)—for
example, increased decomposition, mineralization,
nitrogen fixation, and nutrient absorption—but there
may be a substantial lag in these responses
(S. E. Hobbie 1996; Sturm et al. 2005; Kremers,
Hollister, and Oberbsuer 2015). The trend of long-
term maximum NDVI with temperature class was
likely due to subpixel variations in structural vegetation
types that are controlled by climate. For example, in
northern Alaska, Swanson (2015) found that all tall
shrub plots had mean July temperatures exceeding 10°
C, with temperature thresholds varying by shrub
species.

There are likely many subpixel factors that affect
maximum NDVI, including topographic effects, wind
exposure, snow cover duration, and permafrost distri-
bution. However, regional climate may have
a substantial temporal effect on maximum NDVI. For
example, Verbyla (2015) found similar maximum
annual NDVI patterns from adjacent permafrost-
dominated and nearly permafrost-free basins, likely
due to a similar effect of regional drought on shallow-
rooted subarctic vegetation. Based on dendrochronol-
ogy, X. Walker and Johnstone (2014) found that black
spruce responded negatively to summer drought on all
sites studied, even on cold, moist sites. Based on isotope
analysis, X. Walker, Mack, and Johnstone (2015) con-
cluded that as boreal Alaska continues to warm, we can
expect drought-induced productivity declines across
large regions of the boreal forest, even for trees located

in cool and moist landscape positions. In the arctic
tundra of Alaska, Ackerman et al. (2018) found
a “remarkably coherent” response of Salix pulchra
ring growth in relation to summer warmth among
four landscape types, despite substantial variation in
ecosystem properties (e.g., pH, soil moisture, nitrogen
availability) associated with glacial landscape age and
position. At a smaller scale, Ackerman et al. (2018)
found that although riparian shrubs were significantly
larger than adjacent upland shrubs, there was no sig-
nificant difference in riparian versus upland shrub ring
growth response to summer temperature.

This was a coarse-resolution regional study that did
not account for finer-scale disturbances such as retro-
gressive thaw slumps, wildfires, and glacier recession. In
our high-precipitation region, glacier recession is likely
to accelerate as the climate warms (Arendt et al. 2002;
Das et al. 2014) and, based on finer resolution remote
sensing, recently deglaciated areas are increasing in
NDVI (Green 2018). As the climate continues to warm,
wildfires are likely to become more frequent in our
warmer interior mountains region (Calef et al. 2015),
and retrogressive thaw slumps are likely to become more
frequent across our entire study region (Balser, Jones,
and Gens 2014; Segal, Lantz, and Kokelj 2016). Finer-
resolution remote sensing studies can be used with field-
work to focus on disturbances at a more local scale. For
example, Tape, Verbyla, andWelker (2011) used historic
Landsat sensor data to document the expansion of tall
shrubs and increasing NDVI in the foothills of the
Brooks Range and investigated the potential interaction
between shrub expansion, erosion, and sedimentation.
Frost and Epstein (2014) used high-resolution imagery
to document the rapid development of alder shrubs and
an increase in NDVI following cryogenic landslides.
Fraser et al. (2014) used a time series of aerial photo-
graphy to document disturbances caused by wildfires
and oil development that caused localized increases in
NDVI due to shrub expansion.

Conclusion

Cold temperature was likely limiting vegetation produc-
tivity as indexed bymaximumNDVI across a wide range
of high-latitude mountains in Alaska and the Yukon
Territory. In the cold Arctic region, maximum NDVI
was consistently the lowest at any given elevation, likely
due to the shortest and coldest growing season relative to
other classes. The Arctic class and cold Arctic regions are
within the tundra biome and had a similar relationship
between long-term maximum NDVI and July tempera-
ture class, perhaps due to a short growing season relative
to the lower latitude regions. The interior mountains and
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high-precipitation regions are within the boreal biome
and had the highest long-term maximum NDVI for any
given July temperature class. At colder July temperature
classes, the interior mountains region consistently had
the highest mean long-term maximum NDVI, perhaps
due to a longer growing season relative to the high-
precipitation region. At relatively warm July tempera-
tures, moisture may be limited in the interior mountains
region, because the high-precipitation region consis-
tently had the highest mean NDVI at July temperatures
above 12°C. If the climate continues to warm with no
significant increase in precipitation, moisture stress may
become an important factor limiting vegetation produc-
tivity in the interior mountains region.
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