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Abstract. Winters are limiting for many terrestrial animals due to energy deficits brought on by
resource scarcity and the increased metabolic costs of thermoregulation and traveling through snow. A
better understanding of how animals respond to snow conditions is needed to predict the impacts of
climate change on wildlife. We compared the performance of remotely sensed and modeled snow prod-
ucts as predictors of winter movements at multiple spatial and temporal scales using a data set of
20,544 locations from 30 GPS-collared Dall sheep (Ovis dalli dalli) in Lake Clark National Park and
Preserve, Alaska, USA from 2005 to 2008. We used daily 500-m MODIS normalized difference snow
index (NDSI), and multi-resolution snow depth and density outputs from a snowpack evolution model
(SnowModel), as covariates in step selection functions. We predicted that modeled snow depth would
perform best across all scales of selection due to more informative spatiotemporal variation and rele-
vance to animal movement. Our results indicated that adding any of the evaluated snow metrics sub-
stantially improved model performance and helped characterize winter Dall sheep movements. As
expected, SnowModel-simulated snow depth outperformed NDSI at fine-to-moderate scales of selec-
tion (step scales < 112 h). At the finest scale, Dall sheep selected for snow depths below mean chest
height (<54 cm) when in low-density snows (100 kg/m3), which may have facilitated access to ground
forage and reduced energy expenditure while traveling. However, sheep selected for higher snow densi-
ties (>300 kg/m3) at snow depths above chest height, which likely further reduced energy expenditure
by limiting hoof penetration in deeper snows. At moderate-to-coarse scales (112–896 h step scales),
however, NDSI was the best-performing snow covariate. Thus, the use of publicly available, remotely
sensed, snow cover products can substantially improve models of animal movement, particularly in
cases where movement distances exceed the MODIS 500-m grid threshold. However, remote sensing
products may require substantial data thinning due to cloud cover, potentially limiting its power in
cases where complex models are necessary. Snowpack evolution models such as SnowModel offer
users increased flexibility at the expense of added complexity, but can provide critical insights into
fine-scale responses to rapidly changing snow properties.

Key words: animal movement; MODIS; mountain sheep; resource selection; snow cover; snow depth;
SnowModel; snowpack evolution; step selection function.

INTRODUCTION

Snow enshrouds up to one-third of the global land mass
annually (Lemke et al. 2007) and influences the demography
and movements of animals that reside in these “snows-
capes,” defined here as landscapes covered by snow. Snows-
capes offer benefits for some species in the form of a
protective subnivium critical to overwinter survival (Pauli
et al. 2013). For many animals, however, snow signals a
period of caloric stress brought on by limited access to

high-quality forage and increased metabolic demands asso-
ciated with thermoregulation and impaired mobility (Parker
et al. 1984, 2009, Robinson and Merrill 2012, Gilbert et al.
2017). Conditions such as deep snow or icing caused by
rain-on-snow events (Stien et al. 2010) can severely limit the
ability of herbivores to access ground forage, decrease effi-
ciency of movement (Parker et al. 1984), and increase preda-
tion risk (Hebblewhite et al. 2005, Sand et al. 2006, Brodie
et al. 2014, Lendrum et al. 2017). Thus, the snow-covered
period is often limiting for terrestrial mammals living in
temperate and Arctic regions (Parker et al. 2009), with
strong selective forces linking environmental conditions, ani-
mal behavior, and fitness (Boutin and Lane 2014).
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Snowscapes may have especially strong effects on wildlife
in Arctic and boreal ecosystems where snow cover persists
for much of the year (Callaghan et al. 2011a, Pozzanghera
et al. 2016). The Arctic is warming at twice the rate of lower
latitudes and is predicted to experience elevated levels of
precipitation with a higher proportion falling as rain (Olsen
et al. 2011, Bintanja and Selten 2014, Bring et al. 2016,
Vihma et al. 2016). As a consequence, the snow-covered sea-
son is shortening, spring conditions are becoming more vari-
able, and rain-on-snow events are increasing in frequency
(Putkonen et al. 2009, Jeong and Sushama 2017, Langlois
et al. 2017, Mallory and Boyce 2017). These changes in tem-
perature and hydrology are transforming northern ecosys-
tems, with profound implications for wildlife that are not
well understood (Callaghan et al. 2004, 2011b, Chapin et al.
2004, Post et al. 2009). In addition, changes in climate are
altering human–wildlife interactions in subsistence commu-
nities at high latitudes via direct effects on human mobility
(e.g., snowmobile travel) and indirect effects on the distribu-
tion and abundance of game species (Berman and Kofinas
2004, Brinkman et al. 2016). The paucity of knowledge
regarding the response of animal populations to dynamic
snowscapes represents a critical gap in understanding and
mitigating the vulnerability of natural systems to climate
change.
Snowscapes are highly dynamic, with properties (e.g.,

presence, depth, density, and stratification) varying consid-
erably in space and time due to both short-term (e.g., diur-
nal cycles or single-storm events; Heilig et al. 2015) and
long-term climatic patterns (e.g., seasonal phenology, annual
temperature trends, decadal cycles; Sproles et al. 2013, Hei-
lig et al. 2015). In addition, topography and vegetative cover
can shape microclimates and further contribute to fine-scale
spatial variation in snowscapes (Hiemstra et al. 2006, Liston
and Elder 2006a). Thus, quantifying spatially and tempo-
rally heterogeneous snowscapes is key to understanding how
animals navigate such dynamic landscapes (Watson et al.
2008).
Movement-based resource selection models are effective

tools for evaluating animal movement in response to both
static and dynamic spatial features (Thurfjell et al. 2014).
Step selection functions (SSF) comprise a class of move-
ment-based resource selection models that partition an indi-
vidual’s movement path into discrete steps taken over
uniform intervals of time (Compton et al. 2002, Fortin et al.
2005). Selection in such cases is quantified using conditional
logistic regression, where spatial covariates for observed
steps (i.e., “used” locations or GPS fixes) are compared to
those from random steps (i.e., “available” locations) defined
by an individual or population’s movement patterns (Thurf-
jell et al. 2014). Sampling random steps are achieved
through random draws from modeled or empirical distribu-
tions of displacement distances and turning angles derived
over constant intervals of time, which is often the finest
interval between observed animal locations (Thurfjell et al.
2014). By doing so, resource availability is constrained by an
individual’s current location in space and time and spatial
covariates (e.g., snow depth) change dynamically in “step”
with animal trajectories. Thus, the time interval between
steps (hereafter referred to as the “step scale”) can be
adjusted to test for scale-dependent responses to spatial

covariates, whereby increases in step intervals will permit
longer distance movements and expand both the temporal
and spatial extent of the domain available to an individual.
Snow data products are readily available, but they may

not capture relevant snow properties at spatial and temporal
resolutions that match the needs of animal movement and
resource selection studies. Satellite-derived measures of
snow cover offer extensive spatial and temporal coverage
(Painter et al. 2009, Hall and Riggs 2016), but measuring
snow characteristics such as depth, density, and thaw/re-
freezing conditions across broad landscapes over time is far
more challenging. NASA’s Moderate-resolution Imaging
Spectroradiometer (MODIS) instruments offer moderate
spatial (≥500-m grid for snow cover) and high temporal
(daily) resolution multispectral imagery with global cover-
age (Hall and Riggs 2016) and are commonly used in eco-
logical studies as a means of representing temporally
dynamic landscapes (Bischof et al. 2012, Rose et al. 2015,
Stoner et al. 2016). Yet, MODIS products, such as MODIS
normalized difference snow index (NDSI), may be too
coarse spatially for the purposes of fine-scale animal move-
ment modeling (e.g., 500-m grid). Landsat is another satel-
lite-borne, multispectral instrument that measures fractional
snow-covered area at much finer spatial grains (30 m), but it
has relatively poor temporal resolution (8- or 16-d coverage
intervals), and, like MODIS products, suffers from data
gaps due to cloud cover (Zhu and Woodcock 2014). Addi-
tional space-borne or aerial instruments for measuring snow
properties exist, including passive microwave (Walker and
Goodison 1993, Kim et al. 2015), radar (Nagler and Rott
2000, Marshall and Koh 2008), and light detection and
ranging (LIDAR; Deems et al. 2013, Eitel et al. 2016). Yet,
the data products from each of these instruments are often
insufficient for studying the effects of changing snowpack
properties on animal movement because of limited spatial
resolution (>500-m grid), temporal resolution (weekly,
annual, or single event), and/or spatial and temporal extent.
Thus, current snow products derived using remote sensing
may have limited utility in the study of animal movement.
Physical snowpack models can also be used to simulate a

wide array of snow properties at relevant temporal and spa-
tial scales (NOHRSC 2004, Hiemstra et al. 2006, Watson
et al. 2008). These models simulate the physical processes
involved in surface mass-energy exchange using inputs such
as meteorological data, topography, and vegetation. Com-
pared to remote sensing products, snowpack models offer a
more detailed characterization of snow conditions and can
also vary in extent, temporal and spatial resolution, and
derived snow metrics (Liston and Elder 2006a, Watson et al.
2006a, Brennan et al. 2013). Such models include the Snow
Data Assimilation System (SNODAS, daily 1-km grid cov-
erage across the conterminous United States from 2004
through present day NOHRSC 2015), SnowModel (Liston
and Elder 2006a, b), and several other snow hydrologic
models (Watson et al. 2006b, Messer et al. 2008, Geremia
et al. 2014). SnowModel, in particular, offers users tremen-
dous flexibility as a spatially distributed, multi-layer snow-
evolution modeling system scalable down to 1-m spatial and
10-min temporal resolutions and can derive over 100 unique
snow metrics, including snow depth and snow density (Lis-
ton and Elder 2006a, b). As such, SnowModel could be an
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ideal tool for investigating the influence of snowpack prop-
erties on animal movement and resource selection. Although
SnowModel has been used extensively for climate and
hydrological applications worldwide (Hiemstra et al. 2006,
Liston and Hiemstra 2011, Semmens et al. 2013, Sproles
et al. 2013, Højlund et al. 2016), it has been used in only a
small number of wildlife studies to date (Liston et al. 2016,
Lendrum et al. 2017, Reinking et al. 2018). Snowpack mod-
els offer many attractive features for the purposes of animal
movement and resource selection, though several factors
may limit their utility relative to more user-friendly remote-
sensing products. Apart from SNODAS, snowpack models
require specialized knowledge of physical systems and pro-
gramming to perform the computationally intensive snow-
pack simulations. In addition, physically based snow
evolution models require meteorological inputs derived
through direct measurement or atmospheric models that
may not exist in some areas or at the required resolution.
The resulting model products are thus subject to uncertainty
in model specification, meteorological inputs, and derived
estimates that can lead to systematic biases (e.g., SNODAS;
Brennan et al. 2013, Hedrick et al. 2015), which may be
exacerbated at finer spatiotemporal resolutions (Daly 2006).
Here, we examine the response of Dall sheep (Ovis dalli

dalli) in Lake Clark National Park and Preserve, Alaska,
USA (Lake Clark NPP) to multiple snowpack metrics using
a movement-based analysis of resource selection (Fig. 1). As
a medium-sized ungulate requiring year-round access to for-
age along alpine slopes (Nichols and Bunnell 1999, Roffler
et al. 2017), Dall sheep may be especially sensitive to
changes in snow depth and density (Simmons 1982, Nichols
1988). Dall sheep often seek windblown patches with
exposed forage or sufficiently shallow (or soft) snow to per-
mit excavation, most commonly occurring along the wind-
ward side of ridges or along ridgetops (Simmons 1982,
Nichols and Bunnell 1999). Their populations have declined
by 21% range wide since 1990, with declines of more than
70% in some populations forcing emergency harvest closures
(Alaska Department of Fish and Game 2014). Changing
snow conditions may be playing a role in the observed decli-
nes, yet no quantitative analyses have examined how Dall
sheep navigate complex snowscapes. In addition, with Dall
sheep hunting opportunities being a highly contentious issue
among some user groups (Alaska Department of Fish and
Game 2014), further information on the effects of changing
snowscapes on Dall sheep movements is needed to inform
conservation and management. Here, we compare the rela-
tive abilities of SnowModel outputs and remotely sensed
MODIS data products to predict Dall sheep space use in
winter across spatiotemporal scales. Because snow condi-
tions may influence Dall sheep via several mechanisms (e.g.,
energetics of movement or access to forage) and across mul-
tiple spatial and temporal scales, we conducted our analyses
with three broad hypotheses in mind. First, we predicted
that including any snowscape metric, whether remotely
sensed or modeled, would improve our ability to describe
Dall sheep movement and space use. Second, we predicted
that SnowModel-simulated snow depth would outperform
NDSI as a predictor of Dall sheep movement. Our reason-
ing was that NDSI would have insufficient variation during
winter to capture movement decisions made by Dall sheep.

Third, we predicted Dall sheep would select for shallow,
low-density snows that should facilitate snow excavation
when foraging and improve efficiency of movement (Parker
et al. 1984, Dailey and Hobbs 1989). Our approach illus-
trates a novel framework to understand how wildlife navi-
gate changing snowscapes across multiple scales and may
enhance wildlife managers’ ability to predict how climate
change will affect the movements of valued game species
such as Dall sheep.

METHODS

Study animal

Dall sheep are endemic to the mountainous regions of
Alaska and northwestern Canada, where snow cover persists
for eight to nine months of the year and is characterized by
fine-scale heterogeneity associated with complex landscapes.
Dall sheep prefer rugged terrain at elevations above tree line
(Nichols and Bunnell 1999, Roffler et al. 2017), which facili-
tates evasion of natural predators such as wolves (Canis
lupus), coyotes (Canis latrans), and brown bears (Ursus arc-
tos; Geist 1971, Frid 1997) and extends the growing seasons
of key forage species as a consequence of the topographic
heterogeneity (Nichols and Bunnell 1999, Mysterud et al.
2001). Dall sheep require year-round access to forage in the
form of grasses (Festuca spp. and Poa spp.) and sedges
(Carex spp.). Sheep often exhibit seasonal migratory move-
ments along an elevation gradient, moving higher in sum-
mer and lower in winter (Data S1: Fig. S1). Dall sheep are a
medium-sized ungulate with mean chest heights of 54 cm
(Telfer and Kelsall 1984). However, as with many ungulates,
they are sexually dimorphic in that males are generally taller
and heavier than females (Nichols and Bunnell 1999).
Although Dall sheep are social, herds are sexually segre-
gated except during the rut in late fall and early winter
(Rachlow and Bowyer 1998, Nichols and Bunnell 1999).
We captured 30 adult Dall sheep (12 male, 18 female) using

helicopter net-gunning without chemical immobilization dur-
ing three capture events from fall of 2005 through spring of
2008. We fitted each individual with a global positioning sys-
tem (GPS) collar (Telonics TGW-3500/TGW-3580; Telonics,
Mesa, AZ, USA) programmed to acquire locations every
seven hours and released animals at the site of capture.

Study area

Lake Clark National Park and Preserve (NPP; Figs. 1, 2)
is at the intersection of the Alaska and Aleutian Ranges
along the Chigmit Mountains in south-central Alaska and
at the southern extent of the Dall sheep range. Lake Clark
NPP is characterized by a diversity of elevation-dependent
ecotypes, with boreal conifers (Picea glauca and P. mariana)
and interspersed white birch (Betula neoalaskana) along
south slopes and at lower elevations, as well as alder (Alnus
virdis) along riparian corridors. Alpine tundra and barren
ground dominate as elevation increases, transitioning into
persistent snow cover and glaciers at the highest elevations.
The park’s maritime climate varies considerably by year,
proximity to the coast, and elevation. Winter temperatures
average �10°C in the interior (Remote Automated Weather
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Stations, RAWS; Port Alsworth from 2005 to 2008) and
�1.5°C along the coast (RAWS; Silver Salmon Lakes from
2013 to 2017), with occasional minimum temperatures fall-
ing below �40°C in the interior (data available online).1

Winter precipitation is also heaviest along the coast, with
monthly averages of 90.1 � 12.0 mm (mean � SE) and 18.2
� 3.77 mm along the coast and in the interior, respectively.

Landscape covariates

We included landscape covariates that are expected to
influence Dall sheep movements based on previous studies
(Dailey and Hobbs 1989, Rachlow and Bowyer 1998, Roffler
et al. 2017; Table 1). By doing so, we were able to evaluate
the relative improvement in model fit when including snow
compared to more traditional, landscape-based resource
selection models. We characterized topographic heterogene-
ity by deriving elevation, slope, aspect, vector ruggedness
measure (VRM; Sappington et al. 2007), terrain ruggedness
index (TRI; Riley et al. 1999), and proximity to escape ter-
rain (distance in meters to slopes >60%; McKinney et al.
2003) from LANDFIRE and the United States Geological
Survey National Elevation Dataset (NED, 30-m re-gridded
to 25-m). Terrain metrics have been used to characterize
sheep habitat due to their value in describing seasonal
migrations, refuge from predators, and variation in forage
(Rachlow and Bowyer 1998, Nichols and Bunnell 1999).

However, to avoid redundancy, we only considered models
where proximity to escape terrain, slope, TRI, and VRM
were considered independently. Because of strong associa-
tions between snow properties and aspect, we did not
include aspect in models with snow. We also included prox-
imity to glacier as an index of moisture continuum and for-
age accessibility (sensu Berger et al. 2015) and proximity to
barren ground and shrubs given the importance of both in
providing access to ground forage. Proximity to glacier, bar-
ren ground, and shrub land was derived from the USGS
National Land Cover Database classification scheme on a
30-m grid (NLCD; Homer et al. 2015).

Snow covariates

We simulated snow depth and snow density using Snow-
Model (Liston and Elder 2006a) at 1-d increments for the
period our GPS collars were deployed (1 September 2005
through 31 August 2008; 1,096 d). SnowModel is composed
of four sub-models that estimate surface energy exchanges
(EnBal; Liston et al. 2000), snow depth and water-equiva-
lent evolution (SnowPack; Liston and Mernild 2012), snow
redistribution by wind (SnowTran-3D; Liston et al. 2007),
and assimilate both available field (i.e., weather stations)
and remote sensing data sets (SnowAssim; Liston and
Hiemstra 2008). SnowModel simulates numerous processes,
including snow accumulation; blowing-snow redistribution
and sublimation; interception, unloading, and sublimation
within forest canopies; snow density evolution; and

FIG. 1. This photograph of a Dall sheep ewe and three lambs highlights the spatial heterogeneity in snowscapes, particularly along
ridgelines, within the Dall sheep native range. Photo credit: Laura Prugh; Wrangell Mountains, Alaska, USA.

1 https://raws.dri.edu/
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snowpack ripening and melt (including thaw/refreezing). To
do so accurately, the model requires data inputs for tempo-
rally variant precipitation, air temperature, wind speed and
direction, solar and longwave radiation, and relative humid-
ity obtained from meteorological stations and/or atmo-
spheric models located within or near the simulation
domain, and spatially distributed, time-invariant topogra-
phy and land cover.
We used empirical meteorological data from two remote

automated weather stations (RAWS; Port Alsworth and
Stoney) and 25 grid points from NASA’s Modern Era Ret-
rospective-Analysis for Research and Applications
(MERRA-2; Gelaro et al. 2017) data product. We incorpo-
rated each in MicroMet (Liston and Elder 2006b) to aggre-
gate the original hourly, 10-m air temperature, specific
humidity, u and υ wind components, surface pressure, and
precipitation variables into daily atmospheric forcing distri-
butions required by SnowModel (see Liston and Elder
[2006b] for additional details). In addition, we used Sno-
wAssim to assimilate snow depth observations from the Port
Alsworth and Lake Telaquana Snow Telemetry (SNOTEL)
sites in the Lake Clark NPP region (Fig. 2). Last, we incor-
porated topographic and vegetation data using NED and

NLCD as discussed above, but we reclassified NLCD to
match SnowModel’s defined vegetation classes (see
Appendix S1; Liston and Elder 2006b) and rescaled each
to the appropriate simulation resolution (e.g., 25 m, 100
m, 500 m, 2 km, and 10 km). Our choice of SnowModel
resolutions reflected the finest resolution possible with
existing input data (e.g., 25 m derived from DEM and land
cover). The coarser resolutions were motivated by potential
comparisons with 500-m MODIS NDSI (e.g., 500-m grid)
and two publicly accessible SnowModel data sets on 2-
and 10-km grids for all of Alaska (G. E. Liston, unpub-
lished data) and the pan-Arctic (Liston and Hiemstra
2011), respectively. We simulated each of the coarser grids
by rescaling the original 25-m topography and land cover
inputs to the coarser resolutions. Given the sensitivity of
snow evolution models to quantity and quality of meteoro-
logical input data, we validated SnowModel outputs by
comparing observed and modeled estimates of tempera-
ture, wind speed, and snow depth using available SNOTEL
data (Appendix S1: Fig. S3, S4). In addition, we qualita-
tively compared observed and simulated snow distributions
using Landsat imagery (Appendix S1: Fig. S5), including a
comparison of the presence of glaciers with areas where

a
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FIG. 2. The western face of the Chigmit Mountains in Lake Clark National Park and Preserve, Alaska. White points are locations from
multiple Dall sheep from 27 March through 5 April 2006. The base heatmap depicts the relative, conditional probability of use on 1 April
2006 as predicted by the best model from our second, fine-scale analysis. Hotter colors correspond to higher relative probabilities of use by
sheep. White asterisks denote SNOTEL stations as meteorological inputs in SnowModel (PA, Port Alsworth; TL, Telaquana Lake, 15 km
north of map edge). The two insets (a, b) were arbitrarily chosen to depict model predictions of space use along east-west and north-south
gradients.
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SnowModel indicated snow persistence. Appendix S1 con-
tains additional information about the SnowModel simula-
tion methods.
In addition to SnowModel outputs, we acquired MODIS

snow cover through the National Snow and Ice Data Center
using the Center’s file transfer protocol (e.g., MOD10A1)
and custom R code (available online).2 We specifically used
estimates of normalized difference snow index (NDSI, an
index of fractional snow cover) on a 500-m grid (MOD/
MYD10A1, version 6; Hall and Riggs 2016). Daily MODIS
products suffer from cloud cover and misclassification,
resulting in large proportions of empty pixels within some
regions. Thus, we implemented a two-step gap-filling proce-
dure to increase the number of cloud-free observations
within our data set. First, we filled MODIS Terra
(MOD10A1) with Aqua observations (MYD10A1) given
the temporal lag in satellite passage, which provided an
opportunity for gap-filling as cloud cover evolved through-
out a given day (Parajka and Bl€oschl 2008). Second, we
filled cloud-obscured or missing pixels with the nearest

high-quality measurement within buffers of 5 and 10 d
(sensu Hall et al. 2010; Table 2).

Step selection process

We used a step selection function (SSF; Fortin et al. 2005)
to evaluate the influence of landscape metrics and time--
varying snow conditions on Dall sheep resource selection
from January through mid-May (i.e., winter). We selected

TABLE 1. Covariate descriptions and summary statistics used in a Dall sheep step selection function.

Variable Description

Used Available

Mean Median Range Mean Median Range

Escape
terrain

proximity (m) to >60% slope 60.8 (76.0) 90.0 0.0–805.0 93.7 (160.1) 90.0 0.0–5,048.0

Barren proximity (m) to talus (NLCD
31)

79.1 (134.2) 30.0 0.0–1,420.7 124.9 (214.5) 30.0 0.0–3,559.7

Shrub proximity (m) to dwarf, low, tall
shrub/scrub (NLCD 51,52)

52.8 (87.9) 30.0 0.0–839.2 66.5 (120.7) 30.0 0.0–2,676.4

Glacier proximity (m) to glacier (NLCD
12)

5,123.5 (3,783.1) 3,575.2 108.0–14,955.2 5,130.2 (3,800.1) 3,638.4 0.0–17,706.2

VRM Vector Ruggedness Measure; see
Sappington et al. (2007)

0.5 (0.3) 0.6 0.0–1.0 0.5 (0.3) 0.6 0.0–1.0

TRI Terrain Ruggedness Index 11.6 (3.7) 12.0 0.2–37.7 11.0 (3.9) 11.5 0.0–41.6
Slope degrees (0–90) 30.4 (8.4) 32.0 0.2–62.3 29.0 (9.1) 30.9 0.0–64.6
Elevation 25-m grid, elevation (m) 1,008.5 (237.7) 1,006.9 141.5–2,046.2 979.2 (277.4) 986.0 77.0–2,199.6
Snow
density
(25 m)

kg/m3; 25-m grid SnowModel 201.3 (152.4) 223.5 0.0–550.1 199.8 (152.5) 223.1 0.0–550.1

Snow
density
(500 m)

kg/m3; 500-m grid SnowModel 197.5 (150.1) 224.5 0.0–550.0 197.9 (151.4) 224.9 0.0–550.1

Snow
density (2
km)

kg/m3; 2-km grid SnowModel 196.7 (152.1) 225.4 0.0–550.0 196.5 (152.2) 225.4 0.0–550.1

Snow
density
(10 km)

kg/m3; 10-km grid SnowModel 209.2 (159.1) 245.7 0.0–550.0 209.0 (159.2) 245.4 0.0–550.0

Snow depth
(25 m)

cm, 25-m grid SnowModel 30.0 (32.3) 21.1 0.0–258.6 28.7 (31.1) 20.1 0.0–307.1

Snow depth
(500 m)

cm, 500-m grid SnowModel 27.5 (28.6) 21.0 0.0–128.9 27.5 (28.8) 20.7 0.0–138.8

Snow depth
(2 km)

cm, 2-km grid SnowModel 26.9 (28.5) 20.0 0.0–126.7 26.8 (28.4) 19.7 0.0–133.7

Snow depth
(10 km)

cm, 10-km grid SnowModel 38.1 (42.0) 25.3 0.0–199.0 37.9 (42.0) 25.1 0.0–199.0

NDSI daily normalized difference
snow index, 500-m grid
MODIS

40.9 (30.4) 53.0 0.0–91.0 41.8 (30.6) 54.0 0.0–92.0

Notes: The summary statistics are derived from the complete winter data set and decomposed into used and available location data for
qualitative comparisons of sheep resource selection. Values in parentheses are SD.

TABLE 2. The size of winter data sets used in a Dall sheep step
selection function based on the inclusion of MODIS normalized
difference snow index (NDSI) and the temporal cloud fill
interval.

Subset Nused Navail

MODIS: no cloud fill 457 1,847
MODIS: 5-d cloud fill 2,812 12,460
MODIS: 10-d cloud fill 3,674 16,900
Complete data set 20,554 102,770

Note: Nused, number of used points; Navail, number of available
points.2 ftp://n5eil01u.ecs.nsidc.org/SAN/MOSA/
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this period to avoid potentially confounding behaviors such
as the rut (mid October through mid December) and partu-
rition (May through June; Rachlow and Bowyer 1991).
Although we did not have exact parturition dates for sam-
pled ewes, we used median displacements and elevations
from sheep locations to characterize when this transition
likely occurred (Data S1: Fig. S1). We derived movement
distributions for each individual during winter at eight step
scales from 7 h through 896 h (or approximately five weeks)
using increments in proportion to our finest GPS fix rate
(i.e., 7 h). Each distribution was composed of observed
movements (i.e., empirical step lengths and turning angles)
and used to generate five random displacements from “used”
locations at time tstep, and therefore local “availability” at
time tstep + 1, at every step made by an individual for each
of the eight-step scales. We annotated both observed
(Used = 1) and random steps (Used = 0) with each of the
spatial covariates described above. We conducted condi-
tional logistic regression using the clogit function in R pack-
age survival (version 2.39-5; Therneau 2015). Conditional
logistic regression can pair used locations with matched ran-
dom locations through a stratifying variable, in this case, a
step identifier that is unique across all steps made by all indi-
viduals (Fortin et al. 2005). We also clustered by animal year
in order to account for the lack of independence between
steps made by the same individual for a given winter, which
represents a robust and conservative approach for estimat-
ing coefficient variances provided more than 30 clusters are
present (Prima et al. 2017).

Model selection and evaluation

We assessed collinearity and variance inflation in all
covariates using R package usdm (version 1.1-5; Naimi
2015), and either removed one or considered collinear vari-
ables independently within model sets (cutoffs: r > 0.70 or
VIF > 4; Menard 2002). We ranked models by the Quasi-
likelihood Under Independence Criterion (QIC; Pan 2001),
a conservative information theoretic for evaluating relative
fit in conditional step selection models (Craiu et al. 2008).
In general, smaller QIC values indicate improved relative
model fit. As the data sets change across step scales, both in
terms of the number of locations and the sample of availabil-
ity, comparisons of relative fit were limited to within step
scale model sets. Many snow metrics were also strongly cor-
related (e.g., SnowModel snow depth at 500 m and NDSI at
500 m, r = 0.593–0.634; Data S1: Table S1), necessitating a
two-stage model selection process for each of the eight-step
scales considered. First, we used QIC to identify the most
parsimonious model representing base (or null) resource
selection for Dall sheep by considering all possible combina-
tions of landscape covariates (except elevation and models
with redundant terrain metrics; Table 1). Candidate models
included simple second-order polynomials for all continuous
metrics to reflect possible non-linearities in Dall sheep
response to those covariates (Boyce 2006, Manly et al.
2007). Our justification for doing so was that all continuous
landscape covariates were based either on proximity metrics
or terrain ruggedness and likely to elicit non-linear
responses in sheep. For example, the strength of an individ-
ual’s response to land cover should decline with distance.

Similarly, we might predict sheep would avoid flat terrain
due to the associated risks of predation while also avoiding
the most rugged terrain due to the absence of forage, leading
to selection for some intermediate ruggedness.
For the second stage, we created a model set for each step

scale whereby each model consisted of the top-ranked base
model and a single snow covariate from the suite of snow
metrics we evaluated. This approach allowed us to evaluate
the relative fit of each snow covariate at each step scale,
while accounting for confounding relationships with land-
scape metrics and avoiding statistical problems associated
with collinearity between snow metrics (Hosmer et al.
2013). As with the landscape covariates in the first stage, we
considered simple second-order polynomials to reflect possi-
ble non-linearities in sheep response to snow. Given our
specific interest in snow, we also included models with sim-
ple splines to test for more complex non-linearities (inte-
grated in the clogit function call using the R package
splines, version 3.3.2; R Core Development Team 2016).
Our justification for including non-linear coefficients was
the expectation that sheep would respond to snow in com-
plex ways (e.g., strength of avoidance would increase non-
linearly with snow depth up to some threshold before
plateauing). In addition, we included models with elevation,
either additively or as an interaction, to account for the con-
founding relationship between snow and elevation. Thus,
model sets included the base models from the first stage,
base models with a univariate snow metric, base models with
polynomial or spline-based non-linearities in snow, and base
models with snow–elevation interactions (n = 139 models
evaluated for each step scale).
We examined model sets with three distinct hypotheses in

mind: (1) adding snow metrics will improve model perfor-
mance relative to models without snow, (2) SnowModel-
simulated snow depth will outperform NDSI as a predictor
of Dall sheep movement, and (3) Dall sheep will avoid dee-
per snow across all scales of selection and select for lower
snow densities to facilitate snow excavation when foraging
and improve efficiency of movement. To test the first
hypothesis, we compared models with and without snow
using QIC, expecting QIC to be lower for all models with
snow covariates as compared to the base models. To test the
second hypothesis, we evaluated the relative performance of
snow metrics in describing Dall sheep resource selection
across step scales using QIC. Models included NDSI at a
500-m grid or SnowModel-simulated snow depth at each of
five spatial resolutions (25 m, 100 m, 500 m, 2 km, 10 km;
Data S1: Fig. S2). Because we considered NDSI in this anal-
ysis, we restricted sheep locations to those included in the 5-
or 10-d gap-filled data set in order to facilitate model com-
parisons between NDSI and all other snow metrics using
information criterion (Table 2; Data S1: Tables S1–S3).
To test the third hypothesis, we evaluated Dall sheep

resource selection in response to SnowModel-simulated
snow conditions at the finest step scale (i.e., 7 h) using all
available data (Table 2). In this case, we used snow depth
and density simulated on a 25-m resolution grid. Due to dif-
ferences in body mass and height between the sexes that
could affect the way each responds to fine-scale snow condi-
tions, we evaluated three distinct model sets: males only,
females only, and all individuals pooled. We included
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models allowing non-linearities in response to snow metrics
as we did for the second hypothesis. However, because of the
added power afforded the larger non-MODIS data set, we
incorporated two- and three-way interactions based on com-
binations of snow depth, snow density, and elevation.
Although three-way interactions add substantial complexity
to the model sets, our biological justification for incorporat-
ing such complexity was to identify whether selection for
snow density changed with snow depth per our hypothesis.
In addition, we anticipated that selection for snow condi-
tions might change with elevation or that selection for eleva-
tion would change with snow conditions.
Finally, we standardized all continuous metrics by center-

ing on means and dividing by one standard deviation to
facilitate comparison of effects and model convergence (Gel-
man et al. 2014; Table 1). We evaluated all models using an
out-of-sample cross-validation procedure similar to k-folds
cross-validation (Boyce et al. 2002), but where data were
“folded” by iteratively withholding one individual as a test
data set.

RESULTS

Base model of resource use

Model selection consistently supported the same suite of
landscape covariates across all step scales (Fig. 3; Data S1:
Table S2). In general, the top-ranked models with the lowest
QIC indicated Dall sheep selected for high terrain rugged-
ness (TRI, unit-less 30–45) and proximity to barren ground
and shrub, with increases in the magnitude of selection for
each as step scale increased. However, there was some sup-
port for non-linearities indicating the magnitude of selection
declined at greater distances from both vegetation classes
and at the highest terrain ruggedness. Dall sheep avoided
glaciers, selecting for intermediate distances (~8,500 m at
mean estimates for all covariates), which reflected preference
for rugged terrain while maintaining access to forage. All
estimated coefficients for landscape covariates in the top-
ranked base models were consistent within step scale regard-
less of which snow component was included, indicating our
base model was not confounded by the type of snow metric
(Data S1: Fig. S3). In addition, inference regarding land-
scape metrics was consistent between the models using the
complete (non-MODIS) data set and the 10-d MODIS gap-
filled subset (Data S1: Fig. S3). Therefore, we present the
10-d MODIS gap-filled results below given the added statis-
tical power afforded the larger sample of sheep locations
(Table 2).

Snow resolution across scales of selection

Including snow, in any form and at any spatial scale,
markedly improved model fit relative to a base model with
only time-invariant landscape metrics. All top models with
and without snow exhibited excellent predictive potential for
withheld (i.e., out-of-sample) individuals in a cross-valida-
tion context (Spearman’s Cross-Validation Score ≥0.84). At
fine scales (≤14-h), snow depth at 25 m was the best snow
metric (Fig. 4; Data S1: Table S2). Support switched to
snow depth measured on a 500-m grid at moderate step

scales (28 and 56-h). Interestingly, snow depth at 100 m per-
formed considerably poorer than either snow depth at 25
and 500 m, without a continuous transition along a resolu-
tion gradient as step scale increased (Fig. 4). NDSI outper-
formed SnowModel’s snow depth and density as a predictor
of Dall sheep movements at coarser step scales (≥112 h).
Snow depth also consistently explained more variation in
sheep movement than snow density (i.e., lower QIC for
models with snow depth relative to snow density; Data S1:
Table S2). When evaluating within snow covariate model
sets (i.e., excluding all other snow covariate models), model
selection generally supported an interaction between snow
covariates and elevation, except for NDSI, within covariate-
specific top models (i.e., lowest QIC within a single snow
covariate model subset; Data S1: Table S2). In all cases, the
interaction indicated an avoidance of snow depth and den-
sity with increasing elevation and a shift toward lower eleva-
tions when snow depth and density increased.

Movement at the finest scale

Using the complete data set without NDSI allowed us to
evaluate more complex patterns in resource selection at the
finest step scale, including the addition of three-way interac-
tions between snow depth, snow density, and elevation.
Because the results were consistent across sex-specific and
pooled model sets, we show our results with the sexes pooled
(Figs. 2, 5; for sex-specific results, see Data S1: Table S3, S4,
Fig. S4). Our top model had robust support (next best
DQIC > 33, Spearman’s CV score = 0.94) and included a
two-way interaction between non-linear snow depth (two-
knot spline) and non-linear snow density (two-knot spline),
along with additive non-linear terms for elevation (two-knot
spline; Data S1: Table S5). This model indicated Dall sheep
strongly selected for shallow, low-density snow up to depths
of approximately 25 cm (or one-half of mean chest height)
before declining precipitously to zero above mean chest
height (54 cm, Fig. 5a). In addition, when snow depths
exceeded mean chest height, sheep switched their selection
for snow densities above 300 kg/m3 (Fig. 5b). The non-lin-
ear elevation coefficients indicated sheep selected for inter-
mediate elevations.

DISCUSSION

We demonstrated that incorporating temporally dynamic
and spatially heterogeneous snowpack metrics can substan-
tially improve model performance in assessments of winter
movement and resource selection using a population of Dall
sheep in Lake Clark NPP, Alaska. Although their intended
use may have been for non-biological purposes, existing
snow products offer the potential for novel insights into how
animals use snowscapes during a critical period for many
species. Use of NDSI can improve our understanding of ani-
mal movement at broader scales and has the advantage of
being a user-friendly and publically accessible data set.
However, if fine-scale processes are of primary interest, a
snowpack evolution model such as SnowModel will likely be
needed.
Evaluating the mechanistic associations between climate,

animal behavior, and demography necessitates matching
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snow processes with behavior at relevant spatial and tempo-
ral scales (e.g., the inclusion of a blowing-snow process; Lis-
ton et al. 2007, 2016). For example, snow cover may
influence forage accessibility, and therefore resource selec-
tion, at relatively fine scales (Hansen et al. 2011), whereas
changes in snow cover may trigger migratory movements
and variation in seasonal site selection at relatively large
scales (Johnson et al. 2002, Cagnacci et al. 2011). The
choice in scale, therefore, needs to be sufficiently fine to cap-
ture the desired ecological process and associated behavioral
response (Thurfjell et al. 2014). Yet, the scale used to define
resource selection behavior should not be confused with the
scale used in spatial measurements (i.e., grains or

resolutions). If measured at too fine a resolution, spatial
covariates may add noise, and therefore uncertainty, to the
underlying process that elicit responses in animals, and if
too coarse, informative spatial heterogeneity will be lost
(Boyce 2006, Schaefer and Mayor 2007, Mayor et al. 2009,
DeCesare et al. 2012). Although finer spatial and temporal
resolutions in data are often desirable, the appropriateness
and therefore benefit of current spatial data products is
likely scale dependent with regard to animal movement and
resource selection behavior.
Our results indicated the relative fit of various snow met-

rics was scale dependent across model sets, suggesting some
metrics performed best at specific step scales (Fig. 4). In gen-
eral, fine-scale movements (7- and 14-h) were predicted best
by SnowModel snow depth on a 25-m grid, moderate-scale
movements (28 through 56 h) by snow depth on a 500-m grid,
and large-scale movements (≥112 h) by MODIS NDSI on a
500-m grid. However, selection coefficients were remarkably
scale invariant (Fig. 3), suggesting the interpretation of each
snow metric may be consistent across step scales. Thus, so
long as a given snow metric sufficiently represents the ecolog-
ical processes of interest, the metric could be informative
regardless of the existence of better performing measures.
We predicted the finest resolution snow depth would out-

perform NDSI at all scales of selection because snow depth
contains more information than snow cover and should be
relevant to animal movement at all step scales. We likewise
expected NDSI to inform animal resource use only at the
broadest scales. Indeed, the finest resolution snow depth
metrics (25 m) were more informative than the coarser
NDSI (500 m) in characterizing Dall sheep movements at
the finest step scales (7 and 14 h). The superior performance
of SnowModel at the finest scales was likely due to three
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an assessment of Dall sheep resource selection. Error bars represent 95% confidence intervals. Positive values indicate avoidance for dis-
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main factors. First, snow depth on the 25 m SnowModel
grid captured more variability in snow conditions than
NDSI, particularly during the peak of winter when snow
extent is greatest. Second, snow depth may directly reflect
snow conditions affecting the energetics of animal move-
ment and accessibility of forage and, thus, better predict
space use than NDSI (Parker et al. 1984, Fancy and White
1987, Dailey and Hobbs 1989). Third, using SnowModel,
we were able to simulate snow depth at a finer resolution
than the typical short-distance movements of Dall sheep, as
opposed to the fixed-resolution of a MODIS product. Win-
ter movements of Dall sheep were characterized by a median
distance of 140 m over a 7-h interval (Data S1: Fig. S1),
which was larger than our finest SnowModel resolution of
25 m and smaller than NDSI fixed at 500 m.
Contrary to our expectations, NDSI outperformed snow

depth as a predictor of Dall sheep movements at coarse step
scales (≥112-h; Fig. 4). As a measure of sub-pixel snow
patchiness (Hall and Riggs 2007), NDSI is capturing a spa-
tially implicit snow distribution process that is not reflected
in the pixel-level, point estimates of SnowModel outputs at
the MODIS-equivalent 500-m scale. Although this implies
NDSI is measuring a distinct characteristic of snowscapes at
finer resolutions than the MODIS 500-m grid, NDSI also
performed better than our finest resolution snow depth out-
puts (25 m) at these coarser step scales. This would suggest
that sheep are indeed responding to lower fractional snow
cover more so than snow depth at scales relevant to winter
range selection (akin to second-order selection; Johnson
1980), and is consistent with observations of Dall sheep uti-
lizing patches of wind-exposed forage above tree-line during
winter (Nichols and Bunnell 1999). Thus, sheep may be
selecting winter ranges with a higher preponderance of
snow-free patches, rather than shallower snow depths, as a
measure of access to forage within home ranges. However,
because NDSI is based on actual observations rather than
modeled processes, it may also provide a more accurate rep-
resentation of snow distribution than SnowModel simula-
tions at coarser resolutions.

Although NDSI performed well relative to the other snow
metrics, two main factors may limit the utility of remotely
sensed snow cover as a predictor of animal movements.
First, in similar systems, problems with cloud cover and
snow-cloud misclassification will likely necessitate excluding
substantial amounts of animal location data due to the
absence of an NDSI estimate for a given location in space
and time. We could retain only 2.2% of sheep locations when
including NDSI filtered by high-quality flags, which
increased to 17.9% after performing a 10-d gap fill (Table 2).
At worst, data loss can lead to systematic biases associated
with spatial patterns in persistent cloud cover (Parajka and
Bl€oschl 2008) and at best, substantially weaken one’s infer-
ence regarding complex interactions among snow properties
and other spatial covariates. Data losses may be greater in
cases where additional quality filters are employed, such as
the application of sensor azimuthal thresholds to limit the
use of poor quality measurements at the boundaries of a
satellite’s path (Xin et al. 2012, Li et al. 2016). Although
MOD10A1 (version 006) contains a flag for oscillating mea-
surements akin to those described by Xin et al. (2012), in
the absence of an azimuthal threshold, data may contain
underestimates of NDSI in areas with extensive forest cover,
heterogeneous terrain, or frequent shallow sensor passes
(Xin et al. 2012, Li et al. 2016). Second, study systems with
more homogenous landscapes may have insufficient hetero-
geneity in snow cover to inform animal resource selection
(e.g., 100% snow cover throughout the study area all winter).
In such cases, snowpack evolution models such as SnowMo-
del may provide more variable snow metrics (e.g., snow
depth and density) capable of informing animal space use.
Despite these limitations, our results show that NDSI can
improve animal movement and resource selection models
compared to models lacking snow covariates.
The most appropriate snowscape metric for a given appli-

cation will depend on the ecological process of interest and
the scale at which it occurs (Thurfjell et al. 2014). Our
results indicated the coarser Alaska-wide and pan-Arctic
SnowModel Products (2 and 10 km, respectively) might not
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be informative predictors of animal movement and resource
selection, at least for species exhibiting similar short-dis-
tance movements as Dall sheep. NDSI, and perhaps the
coarser SnowModel products (≥2 km), may be more appro-
priately used when addressing questions pertaining to large-
scale movements in wide-ranging species such as wolverine
(Gulo gulo; Aubry et al. 2007) or in classifying seasonal
ranges of long-distance migrants such as caribou (Rangifer
tarandus; Johnson et al. 2002). In addition, snow depth at
100 m performed considerably poorer than snow depth at 25
m and 500 m. Although not immediately intuitive, this out-
come further highlights the importance of ecological process
when considering scale-dependent responses to dynamic
landscapes. The 25 m snow depth data likely provided suffi-
cient resolution to capture complex, fine-scale responses of
Dall sheep to snowscapes that influenced energetics and
immediate access to forage. At coarser scales of selection
(≥112 h), Dall sheep appeared to switch from more immedi-
ate energetic needs to simply ranging in areas with more
exposed patches of forage (i.e., more patchy snow cover).
Yet, the 100-m resolution snow depth data was inadequate
for the purposes of both, with insufficient variation to
support the added complexity observed at finer scales with
25-m data (≤14 h) and perhaps too noisy for the simpler pat-
terns observed at coarser scales with 500-m data (≥28 h;
Data S1: Table S2). Alternatively, because individuals navi-
gate snowscapes with imperfect knowledge, exploratory
movements may add noise and thus reduce the strength of
selection for snow cover at the 100-m resolution. Further
research examining the scale at which exploratory move-
ments occur would improve inference regarding scale-depen-
dent patterns of selection.
The utility of these snow metrics is not limited to the orig-

inal products and can be used to derive additional snows-
cape properties that reflect specific spatial processes of
interest. For example, NDSI and SnowModel snow depth
can both be used to quantify snow disappearance dates
(Dickerson-Lange et al. 2017) and snowline elevation (Para-
jka et al. 2017, Verbyla et al. 2017), which can be used to
identify the timing of migration in ungulates and seasonal
resource use in montane species. In addition, SnowModel
can be used to generate fractional snow cover (Liston 2004)
in cases where a coarse measure of snow distribution is
hypothesized to influence animal movement.
We were also interested in fine-scale processes that influ-

enced the energetics of movement and accessibility of forage.
Many herbivores at higher latitudes experience chronic
energy deficits as a consequence of limited access to and
availability of high-quality forage during winter (Nichols
and Bunnell 1999, Messer et al. 2008, MacNearney 2014).
Thus, the energetic costs of moving through snow are likely
to affect the way animals navigate snowscapes (Lundmark
and Ball 2008, Avgar et al. 2013). As we predicted, Dall
sheep selected for areas with shallower snow, corresponding
to wind-blown ridges at moderate-to-high elevations
(Fig. 2). Such selection patterns may help offset energy defi-
cits by minimizing effort required to excavate ground forage
under shallow snow (Nichols and Bunnell 1999). We also
observed that sheep strongly avoided deeper snows at or
above mean chest height (54 cm) when in softer snows
(Fig. 5a). Contrary to expectations, however, Dall sheep

selected for higher snow densities when moving through dee-
per snows. Dall sheep should avoid deep snow unless suffi-
cient density exists to support an individual’s foot loadings,
because the costs of traveling through deep snow increases
exponentially with density below some threshold of support
(Parker et al. 1984). This threshold of snow density for sup-
porting Dall sheep was estimated to be 329.0 � 18.0 kg/m3

(mean � SE; Sivy et al., 2018), which corresponds to the
approximate density at which we found Dall sheep selected
for denser snow in deep snow conditions (Fig. 5b).
Although these results were for the sexes combined, the sex-
specific responses to snow depth and density were consistent
with known biological constraints. Males were willing to tra-
vel through deeper snows than females, up to a difference of
approximately 10 cm (Data S1: Fig. S4a, c). Both sexes
responded similarly to snow density, but males appeared to
be more willing to travel through sub-optimal snow condi-
tions based on model uncertainty in a male response to low
density at elevated snow depths (Data S1: Fig. S4). These
results imply a link between behavioral state and selection
for specific snow conditions, whereby sheep select for shal-
low snow when foraging and dense snow when traveling.
Ideally, we would have distinguished in-transit from forag-
ing/resting states in an effort to better characterize state-
dependent resource selection (McClintock et al. 2017), but
this would have been difficult to achieve with the existing
data set in the absence of accelerometer data or finer fix
intervals (i.e., <7 h). Future efforts to monitor space use
should consider behavioral state more explicitly when evalu-
ating movement and resource selection in response to
dynamic snowscapes.
Climate change is altering snow conditions worldwide, with

broad ecological implications for large-scale animal move-
ments (Lundmark and Ball 2008, Cagnacci et al. 2011) and
species’ distributions (Sanecki et al. 2006, Matthews et al.
2010, Stien et al. 2010). Current climate projections for the
contiguous United States and Alaska predict a 4–6% increase
in precipitation, with an increase in snow during the winter
and a greater proportion falling as rain annually (Wetherbee
and Mast 2016). Snow cover is also expected to persist for
longer at higher elevations relative to present day, although
snow cover duration will be shorter on average (Wetherbee
and Mast 2016). Our results indicate that these changes will
likely affect Dall sheep movements in important and poten-
tially predictable ways. Both females and males exhibited
clear movement patterns in response to snow depth and den-
sity that match known thresholds in body size and support,
respectively (Data S1: Fig. S4). Increased winter precipita-
tion, particularly in the form of snow, is likely to reduce the
overall availability of winter habitat for sheep (i.e., forage and
navigable terrain) and limit the ability of individuals to miti-
gate energy deficits through behavioral modification. Thus,
as these fine-scale movements are likely a means of minimiz-
ing energy costs associated with travel (Parker et al. 1984),
increased late winter precipitation could be detrimental to
survival during a critical period of the year for sheep
(Rachlow and Bowyer 1991). If these movements are indeed
linked to demographic processes, present increases in winter
precipitation may already be contributing to recent declines
in Dall sheep populations and may affect population persis-
tence if current climate models are realized.
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In contrast to the expected decline in winter habitat qual-
ity, the projected increase in winter precipitation may lead to
more favorable conditions outside of the winter season.
Warming temperatures and increased winter precipitation
may translate to improved forage quality during parturition
and summer (Mysterud and Austrheim 2014) or overall
shorter snow duration, which may offset the potential demo-
graphic costs of increased late winter precipitation. Our
models can be used to map and predict trends in overwinter-
ing habitat based on current climate projections. Doing so
will help managers to identify areas of high suitability dur-
ing snow-covered periods, and to anticipate how these high-
value areas will shift as the snowpack evolves through time
(Hoefs 1984, Post and Stenseth 1999, Mysterud and Saether
2011). For species that are harvested during winter, such as
some deer and caribou populations, a snowscape modeling
framework will also help managers better predict the move-
ments of wildlife in relation to areas of high hunting activity,
adding a new potential tool for adaptive harvest manage-
ment (Allen and Singh 2016). Understanding the spatial
requirements and resource needs of animals, while accom-
modating dynamic landscapes (e.g., snowscapes), will be
critical in predicting how wildlife will respond to increas-
ingly variable and severe environmental conditions resulting
from climate change.

CONCLUSIONS

We demonstrate that the inclusion of existing snow prod-
ucts can substantially improve models of resource selection
using Dall sheep in Lake Clark NPP as a case study. Our
results provide statistical support for hypothesized drivers of
Dall sheep movement (Nichols and Bunnell 1999) via the
first movement-based assessment of Dall sheep resource
selection. These results help refine our general understand-
ing of how variable snow conditions shape animal move-
ments across multiple spatial and temporal scales. Although
current snow products may be sufficient for specific scale-
dependent applications, we encourage further development
of snowpack evolution models with an interest in generating
snowpack metrics directly relevant to animal movement
(e.g., snow collapse pressure; Hepburn 1978, Sheldon et al.
2007), as well as broader ecological processes such as
resource selection, demography, and community dynamics.
Because such models depend on accurate meteorological
data that can be difficult to obtain in regions with sparse
weather stations, we also encourage the development of new
remote sensing instruments, or novel uses for existing
remote sensing data, that can be used with snowpack evolu-
tion models to achieve more ecologically relevant metrics at
biologically appropriate spatial and temporal scales. Doing
so is essential to understanding how individuals, popula-
tions, and species will respond to changing snowscapes.
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